SSDs


Micron Presents New SSDs and Strategy: From Components to Whole Solutions, 3D NAND Shipping Imminent

Micron Presents New SSDs and Strategy: From Components to Whole Solutions, 3D NAND Shipping Imminent

At Micron’s Enterprising event today in Austin, TX, the company discussed several upcoming products and shared information about an ongoing strategic shift. Not content to stay a mere component supplier for storage and memory, Micron is getting involved in software to help develop solutions that can make the most of their storage hardware offerings. The venue was Micron’s new Storage Solutions Center, the nexus of Micron’s collaboration efforts with OEMs, software vendors and enterprise end-users. At the Storage Solutions Center, Micron and their partners work on whole-system optimization to solve immediate customer needs and to generate reference architectures and documentation for the benefit of other customers.

The reference architectures are branded as Micron Accelerated Solutions, the first of which is a hardware platform by Supermicro bundled with VMWare Virtual SAN and using Micron M510DC SSDs. A similar solution has been developed with the Ceph object storage system and work is underway with Nexenta on an integrated system that will be available in the second half of the year.

In addition to the whole-system products, Micron shared information about several new and upcoming SSDs. The 9100 and 7100 series PCIe SSDs were launched and covered in a separate post. The 9100 was featured in a demo of the software defined storage system under development by SymbolicIO. The 7100 series is the second product line resulting from Micron’s collaboration with Seagate, which previously resulted in a family of SAS SSDs.

Micron announced the schedule for their first 3D NAND SSDs. The Crucial MX300 will launch later this month using Micron’s 3D TLC NAND. Specifics aren’t available yet, but given the 384Gbit (48GB) capacity per die of the 3D TLC, the MX300 will either feature oddball capacities, significantly more overprovisioning than its MLC-based predecessors, or an uneven distribution of NAND dies across the controller’s channels.

In June Micron will launch a pair of OEM client SSDs, the 1100 series and the 2100 series. Specifications for those drives were also not announced, but the photographs reveal some details: an M.2 SATA drive using a Marvell controller (probably 88SS1074, and thus probably also using TLC), and an M.2 PCIe drive with a Silicon Motion controller, presumably the SM2260.

Micron says there will be 3D NAND for the datacenter in the second half of the year, but they have not yet identified any of the drives that will be using it. A 3D XPoint wafer was waved around onstage but Micron made no substantial announcements today about the technology. They did promise that we’ll be hearing more about the products and their branding later this year, and confirmed that they’ve been focusing on using 3D XPoint in NVMe products (whereas Intel is also developing NVDIMMs).

Micron Announces 9100 & 7100 Series PCIe Enterprise SSDs

Micron Announces 9100 & 7100 Series PCIe Enterprise SSDs

Micron entered the PCIe SSD market in 2011 with the formidable P320h. Using generously overprovisioned 34nm SLC NAND and a controller with 32 NAND channels and a PCIe 2.0 x8 link, the P320h boasted extreme write endurance ratings and performance that is still respectable by today’s standards, but with a commensurate price tag. Two years later Micron introduced the P420m with the same controller but 25nm MLC NAND, adding power loss protection capacitors and offering similar performance on read-heavy workloads at a much more accessible price. Today Micron is announcing two new product lines that bring support for NVMe and PCIe 3.0 and use Micron’s latest 16nm MLC NAND.

The new Micron 9100 NVMe PCIe SSD series is the high-performance and high-capacity product. Capacity ranges from 800GB to 3.2TB in either half-height half-length add-in card form factor or as a 15mm thick 2.5″ U.2 drive. With a TDP of up to 27W, the Micron 9100 SSD is the more direct successor to the P420m and is using a PMC-Sierra controller that is descended from the controller used in Micron’s previous PCIe SSDs.

Micron 9100 PCIe SSD Specifications
Capacity 800GB 1.2TB 1.6TB 2.4TB 3.2TB
Interface PCIe 3.0 x4 HHHL or U.2
Sequential Read 2.1 GB/s 2.8 GB/s 2.8 GB/s 3.0 GB/s 3.0 GB/s
Sequential Write 650 MB/s 1.3 GB/s 1.3 GB/s 2.0 GB/s 2.0 GB/s
Random Read IOPS 540k 700k 700k 750k 750k
Random Write IOPS 55k 180k 100k 300k 160k
Idle Power Consumption 7W
Active Power Consumption 16W 21W 21W 27W 27W

The Micron 7100 NVMe PCIe SSD expands Micron’s offerings into a more mainstream segment of the market by adopting Marvell’s 88SS1093 controller that is designed for client and smaller enterprise drives. Capacities for the 7100 range from 400GB to 960GB for the M.2 version and from 400GB to 1.9TB as a 7.5mm thick 2.5″ U.2 drive. The smaller Marvell controller will keep power consumption below 12.5W and the M.2 version further throttles to a limit of 8.25W.

Micron 7100 PCIe SSD Specifications
Capacity 400GB 480GB 800GB 960GB 1.6TB 1.92TB
Interface M.2 22110 or 2.5″ U.2 2.5″ U.2
Sequential Read 2.4 GB/s 2.5 GB/s 2.5 GB/s
Sequential Write 475 MB/s (M.2)
500 MB/s (U.2)
600 MB/s (M.2)
900 MB/s (U.2)
900 MB/s
Random Read IOPS 180k 220k 235k
Random Write IOPS 25k 10k 33k 12k 40k 15k
Idle Power Consumption 3.7W
Maximum Power Consumption 8.25W (M.2)
12.5W (U.2)
12.5W

Both the 9100 and 7100 series include models in two tiers of overprovisioning: for read-heavy or mixed workloads. The drives with greater overprivisioning sacrifice some capacity for greatly increased random write speeds and improved write endurance, though specifications for the latter have not yet been released.

Micron Announces 9100 & 7100 Series PCIe Enterprise SSDs

Micron Announces 9100 & 7100 Series PCIe Enterprise SSDs

Micron entered the PCIe SSD market in 2011 with the formidable P320h. Using generously overprovisioned 34nm SLC NAND and a controller with 32 NAND channels and a PCIe 2.0 x8 link, the P320h boasted extreme write endurance ratings and performance that is still respectable by today’s standards, but with a commensurate price tag. Two years later Micron introduced the P420m with the same controller but 25nm MLC NAND, adding power loss protection capacitors and offering similar performance on read-heavy workloads at a much more accessible price. Today Micron is announcing two new product lines that bring support for NVMe and PCIe 3.0 and use Micron’s latest 16nm MLC NAND.

The new Micron 9100 NVMe PCIe SSD series is the high-performance and high-capacity product. Capacity ranges from 800GB to 3.2TB in either half-height half-length add-in card form factor or as a 15mm thick 2.5″ U.2 drive. With a TDP of up to 27W, the Micron 9100 SSD is the more direct successor to the P420m and is using a PMC-Sierra controller that is descended from the controller used in Micron’s previous PCIe SSDs.

Micron 9100 PCIe SSD Specifications
Capacity 800GB 1.2TB 1.6TB 2.4TB 3.2TB
Interface PCIe 3.0 x4 HHHL or U.2
Sequential Read 2.1 GB/s 2.8 GB/s 2.8 GB/s 3.0 GB/s 3.0 GB/s
Sequential Write 650 MB/s 1.3 GB/s 1.3 GB/s 2.0 GB/s 2.0 GB/s
Random Read IOPS 540k 700k 700k 750k 750k
Random Write IOPS 55k 180k 100k 300k 160k
Idle Power Consumption 7W
Active Power Consumption 16W 21W 21W 27W 27W

The Micron 7100 NVMe PCIe SSD expands Micron’s offerings into a more mainstream segment of the market by adopting Marvell’s 88SS1093 controller that is designed for client and smaller enterprise drives. Capacities for the 7100 range from 400GB to 960GB for the M.2 version and from 400GB to 1.9TB as a 7.5mm thick 2.5″ U.2 drive. The smaller Marvell controller will keep power consumption below 12.5W and the M.2 version further throttles to a limit of 8.25W.

Micron 7100 PCIe SSD Specifications
Capacity 400GB 480GB 800GB 960GB 1.6TB 1.92TB
Interface M.2 22110 or 2.5″ U.2 2.5″ U.2
Sequential Read 2.4 GB/s 2.5 GB/s 2.5 GB/s
Sequential Write 475 MB/s (M.2)
500 MB/s (U.2)
600 MB/s (M.2)
900 MB/s (U.2)
900 MB/s
Random Read IOPS 180k 220k 235k
Random Write IOPS 25k 10k 33k 12k 40k 15k
Idle Power Consumption 3.7W
Maximum Power Consumption 8.25W (M.2)
12.5W (U.2)
12.5W

Both the 9100 and 7100 series include models in two tiers of overprovisioning: for read-heavy or mixed workloads. The drives with greater overprivisioning sacrifice some capacity for greatly increased random write speeds and improved write endurance, though specifications for the latter have not yet been released.

Plextor Embraces TLC NAND: Introduces M7V SSD

Plextor Embraces TLC NAND: Introduces M7V SSD

After toying with the concept last year, Plextor has finally announced its first family of SSDs based on TLC NAND flash memory. The new M7V lineup of drives is projected to be more affordable than Plextor’s SSDs based on MLC NAND, but the company claims that lower prices will not affect reliability and consistent performance that its SSDs are known for. In fact, Plextor says that its M7V will be better than all the competing TLC-based solutions, which is a a very bold claim indeed.

Plextor demonstrated its first TLC-powered drive back at CES 2015. At the time, the SSD was based on the Marvell 88SS1074 controller with LDPC (low-density parity check) error correction for increased endurance as well as Toshiba’s TLC NAND made using its second-generation 19 nm process technology (A19 nm). As it appears, that drive was not the only low-cost option considered by Plextor. By the time company needed to ramp up production of its affordable SSD in mid-2015, it decided to postpone the release of its TLC-powered drive. Instead, the company introduced the M6V, which features Toshiba’s 15 nm MLC NAND, but is powered by a low-cost quad-channel Silicon Motion’s SM2246EN controller. As a result, Plextor managed to release a value SSD, but kept using familiar MLC memory (albeit, with a new controller).

Nonetheless, Plextor knew it could not to skip planar TLC NAND (and use 3D NAND once it becomes available instead), which is why it continued to work on its TLC drives. This month, the company finally revealed its first TLC-based product — the M7V.

Marvell’s 88SS1074 Gets a New Version

The Plextor M7V SSDs are based on the Marvell 88SS1074B1 controller as well as Toshiba’s TLC flash memory made using its 15 nm process technology. When Marvell originally introduced its 88SS1074 controller in May, 2014, it emphasized that the chip was specifically designed to enable SSD makers to use TLC NAND, which is why it features its own NANDEdge error correction technology based on LDPC algorithms. Plextor has been working on products featuring this controller for a long time and the M7V is the fruit of this work.

For some reason, Plextor calls the 88SS1074B1 “the next-generation controller”, even though it looks like a new version of the chip introduced two years ago. This is not a bad thing in general because the 88SS1074 is a fine 8-channel NAND controller and Plextor’s engineers should be familiar with it (after a couple of years of playing with it). If the B1 version has higher clock-rates and/or more processing cores, it can perform more error correction and other operations, which potentially can improve endurance, reliability and/or performance of SSDs. In fact, the new revision of the chip could be the key to many technologies Plextor incorporated into the M7V.

By The Numbers

Plextor will offer its M7V family of SSDs in 2.5”/7mm (PX-M7VC) and M.2 2280 (PX-M7VG) form-factors. In the case of the latter, this is a SATA M.2 drive, as the Marvell 88SS1074B1 controller only supports SATA.

Plextor will offer M7V in 128 GB, 256 GB and 512 GB configurations. The drives also come with enlarged DRAM buffers, which are important for performance and, possibly, for Plextor’s way of handling TLC memory.

Plextor claims that maximum sequential read speed of an M7V SSD is 560 MB/s, whereas its maximum sequential read speed is 530 MB/s. Maximum random 4K read/write speed declared by the manufacturer is 98000/84000 IOPS.

Plextor M7V and M6V SSD Specifications
Size 128 GB 256 GB 512 GB 128 GB 256 GB 512 GB
Controller Marvell 88SS1074B1 Silicon Motion SM2246EN
NAND Toshiba 15 nm Toggle TLC Toshiba 15nm Toggle MLC
DRAM Cache 256 MB 512 MB 1GB 128 MB 256 MB 512 MB
Sequential Read 560 MB/s 535 MB/s
Sequential Write 500 MB/s 530 MB/s 170 MB/s 335 MB/s 455 MB/s
4kB Random Read 97K IOPS 98K IOPS 81K IOPS 83K IOPS 83K IOPS
4kB Random Write 51K IOPS 84K IOPS 42K IOPS 80K IOPS 80K IOPS
Warranty 3 years

It is interesting to note that Plextor’s M7V SSDs are rated faster than the company’s M6V drives both in terms of sequential read/write operations (keep in mind that we are dealing with TLC-based storage devices, hence, we’ll talk about their writing performance below) as well as random read/write operations. Therefore, despite of getting a drive with cheaper memory, owners of the M7V may get higher performance if Plextor’s performance numbers prove true.

Enhanced Endurance & PlexNitro

Plextor claims that it uses TLC NAND memory from Toshiba with increased endurance (which it calls “top-class components”). It also says that its exclusive firmware along with flash components help to increase maximum amount of memory’s P/E cycles to 2000, which is higher compared to that of typical TLC NAND. In fact, durability is what Plextor sees as the main selling point of the M7V.

The company does not specify whether it uses Toshiba’s new TLC NAND devices that architecturally have higher endurance (an unlikely scenario), or Marvell’s 88SS1074B1 controller with LDPC-based error correction technology. Similarly, they aren’t saying much about their own firmware, with its own set of tricks. For competitive reasons, Plextor does not specify the amount of NAND used for over-provisioning to increase endurance of its drives (but not components themselves), but extra NAND helps to increase durability of SSDs.

To speed up writing performance of TLC NAND-based SSDs, like most other TLC drive vendors Plextor is employing a write acceleration technology of some kind to speed up write operations, which it calls PlexNitro. The standard here for TLC drives is to implement a pseudo-SLC mode write cache, however it’s not clear if this is what Plextor is doing. The uncertainty comes from the fact that Plextor isn’t setting aside space for the pSLC cache like other TLC drives have, and is why the M7V ships at 128/256/512GB rather than 120/240/480GB. Whether this means that they’re instead dipping into the traditional and innate ~7% spare area pool or something else entirely remains to be seen.

The actual peculiarities of PlexNitro are yet to be discovered, but what Plextor promises – consistently high performance, increased capacities and high endurance – sounds impressive. Still, it’s something we’ll have to validate once we’re able to benchmark the drive and dive deeper into the workings of PlexNitro.

Finally, the new Plextor M7V solid-state storage devices should hit the market later this month. Plextor did not specify recommended prices of its M7V SSDs, but it is logical to expect them to cost less than the company’s MLC-based M6S Plus drives introduced several weeks ago. The Plextor M7V SSDs offer MTBF of up to 1.5 million hours and are covered with a limited three-year warranty.

Plextor Embraces TLC NAND: Introduces M7V SSD

Plextor Embraces TLC NAND: Introduces M7V SSD

After toying with the concept last year, Plextor has finally announced its first family of SSDs based on TLC NAND flash memory. The new M7V lineup of drives is projected to be more affordable than Plextor’s SSDs based on MLC NAND, but the company claims that lower prices will not affect reliability and consistent performance that its SSDs are known for. In fact, Plextor says that its M7V will be better than all the competing TLC-based solutions, which is a a very bold claim indeed.

Plextor demonstrated its first TLC-powered drive back at CES 2015. At the time, the SSD was based on the Marvell 88SS1074 controller with LDPC (low-density parity check) error correction for increased endurance as well as Toshiba’s TLC NAND made using its second-generation 19 nm process technology (A19 nm). As it appears, that drive was not the only low-cost option considered by Plextor. By the time company needed to ramp up production of its affordable SSD in mid-2015, it decided to postpone the release of its TLC-powered drive. Instead, the company introduced the M6V, which features Toshiba’s 15 nm MLC NAND, but is powered by a low-cost quad-channel Silicon Motion’s SM2246EN controller. As a result, Plextor managed to release a value SSD, but kept using familiar MLC memory (albeit, with a new controller).

Nonetheless, Plextor knew it could not to skip planar TLC NAND (and use 3D NAND once it becomes available instead), which is why it continued to work on its TLC drives. This month, the company finally revealed its first TLC-based product — the M7V.

Marvell’s 88SS1074 Gets a New Version

The Plextor M7V SSDs are based on the Marvell 88SS1074B1 controller as well as Toshiba’s TLC flash memory made using its 15 nm process technology. When Marvell originally introduced its 88SS1074 controller in May, 2014, it emphasized that the chip was specifically designed to enable SSD makers to use TLC NAND, which is why it features its own NANDEdge error correction technology based on LDPC algorithms. Plextor has been working on products featuring this controller for a long time and the M7V is the fruit of this work.

For some reason, Plextor calls the 88SS1074B1 “the next-generation controller”, even though it looks like a new version of the chip introduced two years ago. This is not a bad thing in general because the 88SS1074 is a fine 8-channel NAND controller and Plextor’s engineers should be familiar with it (after a couple of years of playing with it). If the B1 version has higher clock-rates and/or more processing cores, it can perform more error correction and other operations, which potentially can improve endurance, reliability and/or performance of SSDs. In fact, the new revision of the chip could be the key to many technologies Plextor incorporated into the M7V.

By The Numbers

Plextor will offer its M7V family of SSDs in 2.5”/7mm (PX-M7VC) and M.2 2280 (PX-M7VG) form-factors. In the case of the latter, this is a SATA M.2 drive, as the Marvell 88SS1074B1 controller only supports SATA.

Plextor will offer M7V in 128 GB, 256 GB and 512 GB configurations. The drives also come with enlarged DRAM buffers, which are important for performance and, possibly, for Plextor’s way of handling TLC memory.

Plextor claims that maximum sequential read speed of an M7V SSD is 560 MB/s, whereas its maximum sequential read speed is 530 MB/s. Maximum random 4K read/write speed declared by the manufacturer is 98000/84000 IOPS.

Plextor M7V and M6V SSD Specifications
Size 128 GB 256 GB 512 GB 128 GB 256 GB 512 GB
Controller Marvell 88SS1074B1 Silicon Motion SM2246EN
NAND Toshiba 15 nm Toggle TLC Toshiba 15nm Toggle MLC
DRAM Cache 256 MB 512 MB 1GB 128 MB 256 MB 512 MB
Sequential Read 560 MB/s 535 MB/s
Sequential Write 500 MB/s 530 MB/s 170 MB/s 335 MB/s 455 MB/s
4kB Random Read 97K IOPS 98K IOPS 81K IOPS 83K IOPS 83K IOPS
4kB Random Write 51K IOPS 84K IOPS 42K IOPS 80K IOPS 80K IOPS
Warranty 3 years

It is interesting to note that Plextor’s M7V SSDs are rated faster than the company’s M6V drives both in terms of sequential read/write operations (keep in mind that we are dealing with TLC-based storage devices, hence, we’ll talk about their writing performance below) as well as random read/write operations. Therefore, despite of getting a drive with cheaper memory, owners of the M7V may get higher performance if Plextor’s performance numbers prove true.

Enhanced Endurance & PlexNitro

Plextor claims that it uses TLC NAND memory from Toshiba with increased endurance (which it calls “top-class components”). It also says that its exclusive firmware along with flash components help to increase maximum amount of memory’s P/E cycles to 2000, which is higher compared to that of typical TLC NAND. In fact, durability is what Plextor sees as the main selling point of the M7V.

The company does not specify whether it uses Toshiba’s new TLC NAND devices that architecturally have higher endurance (an unlikely scenario), or Marvell’s 88SS1074B1 controller with LDPC-based error correction technology. Similarly, they aren’t saying much about their own firmware, with its own set of tricks. For competitive reasons, Plextor does not specify the amount of NAND used for over-provisioning to increase endurance of its drives (but not components themselves), but extra NAND helps to increase durability of SSDs.

To speed up writing performance of TLC NAND-based SSDs, like most other TLC drive vendors Plextor is employing a write acceleration technology of some kind to speed up write operations, which it calls PlexNitro. The standard here for TLC drives is to implement a pseudo-SLC mode write cache, however it’s not clear if this is what Plextor is doing. The uncertainty comes from the fact that Plextor isn’t setting aside space for the pSLC cache like other TLC drives have, and is why the M7V ships at 128/256/512GB rather than 120/240/480GB. Whether this means that they’re instead dipping into the traditional and innate ~7% spare area pool or something else entirely remains to be seen.

The actual peculiarities of PlexNitro are yet to be discovered, but what Plextor promises – consistently high performance, increased capacities and high endurance – sounds impressive. Still, it’s something we’ll have to validate once we’re able to benchmark the drive and dive deeper into the workings of PlexNitro.

Finally, the new Plextor M7V solid-state storage devices should hit the market later this month. Plextor did not specify recommended prices of its M7V SSDs, but it is logical to expect them to cost less than the company’s MLC-based M6S Plus drives introduced several weeks ago. The Plextor M7V SSDs offer MTBF of up to 1.5 million hours and are covered with a limited three-year warranty.